733 research outputs found

    After the 1991 Gulf War ended, the Shiite population in southern Iraq and the Kurdish population in northern Iraq revolted against the Iraqi government... : deliberate attacks, imams from these mosques were providing medical treatment and shelter to injured civilians and insurgents...

    Get PDF
    . 3) Iraqi troops entered hospitals in Basrah and Karbala and summarily murdered any males between the age of 12 and 70. Iraqi troops also murdered, tortured, and raped medical personnel who had provided treatment to insurgents. 4) Ali Hassan Al Majid rounded up male civilians (of fighting age) and ordered them to drink petrol. After these men drank the petrol, Al Majid ordered his troops to fire or personally fired himself tracer bullets into the victims so that the petrol would ignite and the victim would explode. This tactic was used to intimidate people into offering information about insurgent activities. 5) Taha Yassin Ramadan allegedly ordered the Iraqi Air Force to load planes with bombs containing sarin nerve gas. These planes allegedly flew to Karbala and released their payloads over the city. The bombs did not detonate and no sarin was released into the city. Do any of these incidents constitute crimes within the jurisdiction of the Iraqi High Tribunal

    Production of Malonic Acid through the Fermentation of Glucose

    Get PDF
    The overall process to produce malonic acid has not drastically changed in the past 50 years. The current process is damaging to the environment and costly, requiring high market prices. Lygos, Inc., a lab in Berkeley, California, has published a patent describing a way to produce malonic acid through the biological fermentation of genetically modified yeast cells. This proposed technology is appealing as it is both better for the environment and economically friendly. For the process discussed in this report, genetically modified Pichia Kudriavzevii yeast cells will be purchased from the Lygos lab along with the negotiation of exclusive licensing rights to the technology. The cells will be grown in fermentation vessels, while being constantly fed oxygen, glucose and fermentation media. The cells will excrete malonic acid in the 101 hour fermentation process. In order to meet a production capacity of 10M pounds of malonic acid a year, 236 total batches are needed. The fermentation broth will then be fed continuously to a downstream process which includes vacuum filtration, reverse osmosis, and crystallization to produce a solid malonic acid powder. After drying, malonic acid crystal powder of 99.9% purity will be sold to the cosmetic, pharmaceutical and petrochemical industries. The design requires an initial investment of 23.1M.Theinvestorsrateofreturn(IRR)is52.623.1M. The investors’ rate of return (IRR) is 52.6%, the return on investment (ROI) is 46.9% in year three, and the net present value (NPV) is 59.6M in 2018. Sensitivity analyses on the licensing fee and price of cells concluded that these prices are negotiable with Lygos, Inc. This design is recommended based on the process specifications and economic viability of the process, but the success of this project largely depends on the agreement that can be reached with the originators of the technology, Lygos

    Functional Characterization and Evolution of the Isotuberculosinol Operon in Mycobacterium Tuberculosis and Related Mycobacteria

    Get PDF
    Terpenoid metabolites are important to the cellular function, structural integrity, and pathogenesis of the human-specific pathogen Mycobacterium tuberculosis (Mtb). Genetic and biochemical investigations have indicated a role for the diterpenoid isotuberculosinol (isoTb) early in the infection process. There are only two genes (Rv3377c and Rv3378c) required for production of isoTb, yet these are found in what appears to be a five-gene terpenoid/isoprenoid biosynthetic operon. Of the three remaining genes (Rv3379c, Rv3382c, and Rv3383c), previous work has indicated that Rv3379c is an inactive pseudo-gene. Here we demonstrate that Rv3382c and Rv3383c encode biochemically redundant machinery for isoprenoid metabolism, encoding a functional 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (LytB) for isoprenoid precursor production and a geranylgeranyl diphosphate (GGPP) synthase, respectively, for which the Mtb genome contains other functional isozymes (Rv1110 and Rv0562, respectively). These results complete the characterization of the isoTb biosynthetic operon, as well as further elucidating isoprenoid metabolism in Mtb. In addition, we have investigated the evolutionary origin of this operon, revealing Mtb-specific conservation of the diterpene synthase genes responsible for isoTb biosynthesis, which supports our previously advanced hypothesis that isoTb acts as a human-specific pathogenic metabolite and is consistent with the human host specificity of Mtb. Intriguingly, our results revealed that many mycobacteria contain orthologs for both Rv3383c and Rv0562, suggesting a potentially important role for these functionally redundant GGPP synthases in the evolution of terpenoid/isoprenoid metabolism in the mycobacteria

    The Connection, Volume 10, Issue 01, Spring 2016

    Get PDF
    The Connection is published by the Prevention Research Center (PRC), Prevention & Population Sciences, University of New Mexico, Albuquerque. The purpose of The Connection is to provide reports and updates on programs of the PRC and those of its Community Advisory Council and other partners.https://digitalrepository.unm.edu/hsc_prc_newsletters/1000/thumbnail.jp

    Reduction in Dynamic Visual Acuity Reveals Gaze Control Changes Following Spaceflight

    Get PDF
    INTRODUCTION: Exposure to microgravity causes adaptive changes in eye-head coordination that can lead to altered gaze control. This could affect postflight visual acuity during head and body motion. The goal of this study was to characterize changes in dynamic visual acuity after long-duration spaceflight. METHODS: Dynamic Visual Acuity (DVA) data from 14 astro/cosmonauts were collected after long-duration (~6 months) spaceflight. The difference in acuity between seated and walking conditions provided a metric of change in the subjects ability to maintain gaze fixation during self-motion. In each condition, a psychophysical threshold detection algorithm was used to display Landolt ring optotypes at a size that was near each subject s acuity threshold. Verbal responses regarding the orientation of the gap were recorded as the optotypes appeared sequentially on a computer display 4 meters away. During the walking trials, subjects walked at 6.4 km/h on a motorized treadmill. RESULTS: A decrement in mean postflight DVA was found, with mean values returning to baseline within 1 week. The population mean showed a consistent improvement in DVA performance, but it was accompanied by high variability. A closer examination of the individual subject s recovery curves revealed that many did not follow a pattern of continuous improvement with each passing day. When adjusted on the basis of previous long-duration flight experience, the population mean shows a "bounce" in the re-adaptation curve. CONCLUSION: Gaze control during self-motion is altered following long-duration spaceflight and changes in postflight DVA performance indicate that vestibular re-adaptation may be more complex than a gradual return to normal

    Learning to detect and understand drug discontinuation events from clinical narratives

    Get PDF
    OBJECTIVE: Identifying drug discontinuation (DDC) events and understanding their reasons are important for medication management and drug safety surveillance. Structured data resources are often incomplete and lack reason information. In this article, we assessed the ability of natural language processing (NLP) systems to unlock DDC information from clinical narratives automatically. MATERIALS AND METHODS: We collected 1867 de-identified providers\u27 notes from the University of Massachusetts Medical School hospital electronic health record system. Then 2 human experts chart reviewed those clinical notes to annotate DDC events and their reasons. Using the annotated data, we developed and evaluated NLP systems to automatically identify drug discontinuations and reasons at the sentence level using a novel semantic enrichment-based vector representation (SEVR) method for enhanced feature representation. RESULTS: Our SEVR-based NLP system achieved the best performance of 0.785 (AUC-ROC) for detecting discontinuation events and 0.745 (AUC-ROC) for identifying reasons when testing this highly imbalanced data, outperforming 2 state-of-the-art non-SEVR-based models. Compared with a rule-based baseline system for discontinuation detection, our system improved the sensitivity significantly (57.75% vs 18.31%, absolute value) while retaining a high specificity of 99.25%, leading to a significant improvement in AUC-ROC by 32.83% (absolute value). CONCLUSION: Experiments have shown that a high-performance NLP system can be developed to automatically identify DDCs and their reasons from providers\u27 notes. The SEVR model effectively improved the system performance showing better generalization and robustness on unseen test data. Our work is an important step toward identifying reasons for drug discontinuation that will inform drug safety surveillance and pharmacovigilance

    Molecular characterization of the uncultivatable hemotropic bacterium Mycoplasma haemofelis

    Get PDF
    Mycoplasma haemofelis is a pathogenic feline hemoplasma. Despite its importance, little is known about its metabolic pathways or mechanism of pathogenicity due to it being uncultivatable. The recently sequenced M. haemofelis str. Langford 1 genome was analysed and compared to those of other available hemoplasma genomes

    Cell-free translation and purification of Arabidopsis thaliana regulator of G signaling 1 protein

    Get PDF
    Arabidopsis thaliana Regulator of G protein Signalling 1 (AtRGS1) is a protein with a predicted N-terminal 7-transmembrane (7TM) domain and a C-terminal cytosolic RGS1 box domain. The RGS1 box domain exerts GTPase activation (GAP) activity on Gα (AtGPA1), a component of heterotrimeric G protein signaling in plants. AtRGS1 may perceive an exogenous agonist to regulate the steady-state levels of the active form of AtGPA1. It is uncertain if the full length RGS1 protein exerts any atypical effects on Gα, nor has it been established exactly how AtRGS1 contributes to perception of an extracellular signal and transmits this response to a G-protein dependent signaling cascade. Such an understanding can be deduced from in vitro studies using the purified and soluble RGS1-box domain. Further studies on full-length AtRGS1 have been inhibited due to the extreme low abundance of the endogenous AtRGS1 protein in plants and lack of a suitable heterologous system to express AtRGS1. Here, we describe methods to produce full-length AtRGS1 by cell free synthesis into unilamellar liposomes and nanodiscs. The cell-free synthesized AtRGS1 exhibits GTPase activating activity on Gα and can be purified to a level suitable for biochemical analyses
    corecore